Papers
Topics
Authors
Recent
2000 character limit reached

Entire surfaces of constant curvature in Minkowski 3-space

Published 21 May 2018 in math.DG, gr-qc, and math.AP | (1805.08024v1)

Abstract: This paper concerns the global theory of properly embedded spacelike surfaces in three-dimensional Minkowski space in relation to their Gaussian curvature. We prove that every regular domain which is not a wedge is uniquely foliated by properly embedded convex surfaces of constant Gaussian curvature. This is a consequence of our classification of surfaces with bounded prescribed Gaussian curvature, sometimes called the Minkowski problem, for which partial results were obtained by Li, Guan-Jian-Schoen, and Bonsante-Seppi. Some applications to minimal Lagrangian self-maps of the hyperbolic plane are obtained.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.