Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Homogenization of time-harmonic Maxwell's equations in nonhomogeneous plasmonic structures (1805.07671v4)

Published 19 May 2018 in math.AP

Abstract: We carry out the homogenization of time-harmonic Maxwell's equations in a periodic, layered structure made of two-dimensional (2D) metallic sheets immersed in a heterogeneous and in principle anisotropic dielectric medium. In this setting, the tangential magnetic field exhibits a jump across each sheet. Our goal is the rigorous derivation of the effective dielectric permittivity of the system from the solution of a local cell problem via suitable averages. Each sheet has a fine-scale, inhomogeneous and possibly anisotropic surface conductivity that scales linearly with the microstructure scale, $d$. Starting with the weak formulation of the requisite boundary value problem, we prove the convergence of its solution to a homogenization limit as $d$ approaches zero. The effective permittivity and cell problem express a bulk average from the host dielectric and a surface average germane to the 2D material (metallic layer). We discuss implications of this analysis in the modeling of plasmonic crystals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.