Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Newton Polygons Arising for Special Families of Cyclic Covers of the Projective Line (1805.06914v2)

Published 17 May 2018 in math.NT

Abstract: By a result of Moonen, there are exactly 20 positive-dimensional families of cyclic covers of the projective line for which the Torelli image is open and dense in the associated Shimura variety. For each of these, we compute the Newton polygons, and the $\mu$-ordinary Ekedahl--Oort type, occurring in the characteristic $p$ reduction of the Shimura variety. We prove that all but a few of the Newton polygons appear on the open Torelli locus. As an application, we produce multiple new examples of Newton polygons and Ekedahl--Oort types of Jacobians of smooth curves in characteristic $p$. Under certain congruence conditions on $p$, these include: the supersingular Newton polygon for genus $5,6,7$; fourteen new non-supersingular Newton polygons for genus $5-7$; eleven new Ekedahl--Oort types for genus $4-7$ and, for all $g \geq 6$, the Newton polygon with $p$-rank $g-6$ with slopes $1/6$ and $5/6$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube