Constructive Renormalization of the $2$-dimensional Grosse-Wulkenhaar Model (1805.06365v1)
Abstract: We study a quartic matrix model with partition function $Z=\int d\ M\exp{\rm Tr}\ (-\Delta M2-\frac{\lambda}{4}M4)$. The integral is over the space of Hermitian $(\Lambda+1)\times(\Lambda+1)$ matrices, the matrix $\Delta$, which is not a multiple of the identity matrix, encodes the dynamics and $\lambda>0$ is a scalar coupling constant. We proved that the logarithm of the partition function is the Borel sum of the perturbation series, hence is a well defined analytic function of the coupling constant in certain analytic domain of $\lambda$, by using the multi-scale loop vertex expansions. All the non-planar graphs generated in the perturbation expansions have been taken care of on the same footing as the planar ones. This model is derived from the self-dual $\phi4$ theory on the 2 dimensional Moyal space, also called the 2 dimensional Grosse-Wulkenhaar model. This would also be the first fully constructed matrix model which is non-trivial and not solvable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.