Stable components of directed spaces
Abstract: In this paper, we introduce the notions of stable future, past and total component systems on a directed space with no loops. Then, we associate the stable component category to a stable (future, past or total) component system. Stable component categories are enriched in some monoidal category, eg. the homotopy category of spaces, and carry information about the spaces of directed paths between particular points. It is shown that the geometric realizations of finite pre-cubical sets with no loops admit the unique minimal stable (future/past/total) component systems. These constructions provide a new family of invariants for directed spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.