Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces (1805.04236v3)

Published 11 May 2018 in math.OA and math.FA

Abstract: Given a coarse space $(X,\mathcal{E})$, one can define a $\mathrm{C}*$-algebra $\mathrm{C}*_u(X)$ called the uniform Roe algebra of $(X,\mathcal{E})$. It has been proved by J. \v{S}pakula and R. Willett that if the uniform Roe algebras of two uniformly locally finite metric spaces with property A are isomorphic, then the metric spaces are coarsely equivalent to each other. In this paper, we look at the problem of generalizing this result for general coarse spaces and on weakening the hypothesis of the spaces having property A.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.