Mixed-norm $L_p$-estimates for non-stationary Stokes systems with singular VMO coefficients and applications (1805.04143v2)
Abstract: We prove the mixed-norm Sobolev estimates for solutions to both divergence and non-divergence form time-dependent Stokes systems with unbounded measurable coefficients having small mean oscillations with respect to the spatial variable in small cylinders. As a special case, our results imply Caccioppoli's type estimates for the Stokes systems with variable coefficients. A new $\epsilon$-regularity criterion for Leray-Hopf weak solutions of Navier-Stokes equations is also obtained as a consequence of our regularity results, which in turn implies some borderline cases of the well-known Serrin's regularity criterion.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.