Papers
Topics
Authors
Recent
Search
2000 character limit reached

Using and reusing coherence to realize quantum processes

Published 10 May 2018 in quant-ph | (1805.04045v3)

Abstract: Coherent superposition is a key feature of quantum mechanics that underlies the advantage of quantum technologies over their classical counterparts. Recently, coherence has been recast as a resource theory in an attempt to identify and quantify it in an operationally well-defined manner. Here we study how the coherence present in a state can be used to implement a quantum channel via incoherent operations and, in turn, to assess its degree of coherence. We introduce the robustness of coherence of a quantum channel---which reduces to the homonymous measure for states when computed on constant-output channels---and prove that: i) it quantifies the minimal rank of a maximally coherent state required to implement the channel; ii) its logarithm quantifies the amortized cost of implementing the channel provided some coherence is recovered at the output; iii) its logarithm also quantifies the zero-error asymptotic cost of implementation of many independent copies of a channel. We also consider the generalized problem of imperfect implementation with arbitrary resource states. Using the robustness of coherence, we find that in general a quantum channel can be implemented without employing a maximally coherent resource state. In fact, we prove that \textit{every} pure coherent state in dimension larger than $2$, however weakly so, turns out to be a valuable resource to implement \textit{some} coherent unitary channel. We illustrate our findings for the case of single-qubit unitary channels.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.