Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Continuous, Full-scope, Spatio-temporal Tracking Metric based on KL-divergence

Published 9 May 2018 in cs.CV | (1805.03707v3)

Abstract: A unified metric is given for the evaluation of object tracking systems. The metric is inspired by KL-divergence or relative entropy, which is commonly used to evaluate clustering techniques. Since tracking problems are fundamentally different from clustering, the components of KL-divergence are recast to handle various types of tracking errors (i.e., false alarms, missed detections, merges, splits). Scoring results are given on a standard tracking dataset (Oxford Town Centre Dataset), as well as several simulated scenarios. Also, this new metric is compared with several other metrics including the commonly used Multiple Object Tracking Accuracy metric. In the final section, advantages of this metric are given including the fact that it is continuous, parameter-less and comprehensive.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.