Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Visual Attribute-augmented Three-dimensional Convolutional Neural Network for Enhanced Human Action Recognition (1805.02860v1)

Published 8 May 2018 in cs.CV

Abstract: Visual attributes in individual video frames, such as the presence of characteristic objects and scenes, offer substantial information for action recognition in videos. With individual 2D video frame as input, visual attributes extraction could be achieved effectively and efficiently with more sophisticated convolutional neural network than current 3D CNNs with spatio-temporal filters, thanks to fewer parameters in 2D CNNs. In this paper, the integration of visual attributes (including detection, encoding and classification) into multi-stream 3D CNN is proposed for action recognition in trimmed videos, with the proposed visual Attribute-augmented 3D CNN (A3D) framework. The visual attribute pipeline includes an object detection network, an attributes encoding network and a classification network. Our proposed A3D framework achieves state-of-the-art performance on both the HMDB51 and the UCF101 datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.