Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Gene Regulatory Networks with High-Dimensional Heterogeneous Data (1805.02547v1)

Published 7 May 2018 in stat.ME

Abstract: The Gaussian graphical model is a widely used tool for learning gene regulatory networks with high-dimensional gene expression data. Most existing methods for Gaussian graphical models assume that the data are homogeneous, i.e., all samples are drawn from a single Gaussian distribution. However, for many real problems, the data are heterogeneous, which may contain some subgroups or come from different resources. This paper proposes to model the heterogeneous data using a mixture Gaussian graphical model, and apply the imputation-consistency algorithm, combining with the $\psi$-learning algorithm, to estimate the parameters of the mixture model and cluster the samples to different subgroups. An integrated Gaussian graphical network is learned across the subgroups along with the iterations of the imputation-consistency algorithm. The proposed method is compared with an existing method for learning mixture Gaussian graphical models as well as a few other methods developed for homogeneous data, such as graphical Lasso, nodewise regression and $\psi$-learning. The numerical results indicate superiority of the proposed method in all aspects of parameter estimation, cluster identification and network construction. The numerical results also indicate generality of the proposed method: it can be applied to homogeneous data without significant harms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube