Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alpha-Beta Divergence For Variational Inference (1805.01045v2)

Published 2 May 2018 in stat.ML and cs.LG

Abstract: This paper introduces a variational approximation framework using direct optimization of what is known as the {\it scale invariant Alpha-Beta divergence} (sAB divergence). This new objective encompasses most variational objectives that use the Kullback-Leibler, the R{\'e}nyi or the gamma divergences. It also gives access to objective functions never exploited before in the context of variational inference. This is achieved via two easy to interpret control parameters, which allow for a smooth interpolation over the divergence space while trading-off properties such as mass-covering of a target distribution and robustness to outliers in the data. Furthermore, the sAB variational objective can be optimized directly by repurposing existing methods for Monte Carlo computation of complex variational objectives, leading to estimates of the divergence instead of variational lower bounds. We show the advantages of this objective on Bayesian models for regression problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jean-Baptiste Regli (4 papers)
  2. Ricardo Silva (55 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.