Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

f-Divergence Variational Inference (2009.13093v4)

Published 28 Sep 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: This paper introduces the $f$-divergence variational inference ($f$-VI) that generalizes variational inference to all $f$-divergences. Initiated from minimizing a crafty surrogate $f$-divergence that shares the statistical consistency with the $f$-divergence, the $f$-VI framework not only unifies a number of existing VI methods, e.g. Kullback-Leibler VI, R\'{e}nyi's $\alpha$-VI, and $\chi$-VI, but offers a standardized toolkit for VI subject to arbitrary divergences from $f$-divergence family. A general $f$-variational bound is derived and provides a sandwich estimate of marginal likelihood (or evidence). The development of the $f$-VI unfolds with a stochastic optimization scheme that utilizes the reparameterization trick, importance weighting and Monte Carlo approximation; a mean-field approximation scheme that generalizes the well-known coordinate ascent variational inference (CAVI) is also proposed for $f$-VI. Empirical examples, including variational autoencoders and Bayesian neural networks, are provided to demonstrate the effectiveness and the wide applicability of $f$-VI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Neng Wan (17 papers)
  2. Dapeng Li (32 papers)
  3. Naira Hovakimyan (114 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.