Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator Variational Inference (1610.09033v3)

Published 27 Oct 2016 in stat.ML, cs.LG, stat.CO, and stat.ME

Abstract: Variational inference is an umbrella term for algorithms which cast Bayesian inference as optimization. Classically, variational inference uses the Kullback-Leibler divergence to define the optimization. Though this divergence has been widely used, the resultant posterior approximation can suffer from undesirable statistical properties. To address this, we reexamine variational inference from its roots as an optimization problem. We use operators, or functions of functions, to design variational objectives. As one example, we design a variational objective with a Langevin-Stein operator. We develop a black box algorithm, operator variational inference (OPVI), for optimizing any operator objective. Importantly, operators enable us to make explicit the statistical and computational tradeoffs for variational inference. We can characterize different properties of variational objectives, such as objectives that admit data subsampling---allowing inference to scale to massive data---as well as objectives that admit variational programs---a rich class of posterior approximations that does not require a tractable density. We illustrate the benefits of OPVI on a mixture model and a generative model of images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rajesh Ranganath (76 papers)
  2. Jaan Altosaar (9 papers)
  3. Dustin Tran (54 papers)
  4. David M. Blei (111 papers)
Citations (116)

Summary

We haven't generated a summary for this paper yet.