Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Duality problem for disjointly homogeneous rearrangement invariant spaces (1805.00691v2)

Published 2 May 2018 in math.FA

Abstract: Let $1\le p<\infty$. A Banach lattice $E$ is said to be disjointly homogeneous (resp. $p$-disjointly homogeneous) if two arbitrary normalized disjoint sequences from $E$ contain equivalent in $E$ subsequences (resp. every normalized disjoint sequence contains a subsequence equivalent in $E$ to the unit vector basis of $l_p$). Answering a question raised in 2014 by Flores, Hernandez, Spinu, Tradacete, and Troitsky, for each $1<p<\infty$, we construct a reflexive $p$-disjointly homogeneous rearrangement invariant space on $[0,1]$ whose dual is not disjointly homogeneous. Employing methods from interpolation theory, we provide new examples of disjointly homogeneous rearrangement invariant spaces; in particular, we show that there is a Tsirelson type disjointly homogeneous rearrangement invariant space, which contains no subspace isomorphic to $l_p$, $1\le p<\infty$, or $c_0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.