Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Characterizing Efficient Referrals in Social Networks (1805.00252v1)

Published 1 May 2018 in cs.SI

Abstract: Users of social networks often focus on specific areas of that network, leading to the well-known "filter bubble" effect. Connecting people to a new area of the network in a way that will cause them to become active in that area could help alleviate this effect and improve social welfare. Here we present preliminary analysis of network referrals, that is, attempts by users to connect peers to other areas of the network. We classify these referrals by their efficiency, i.e., the likelihood that a referral will result in a user becoming active in the new area of the network. We show that by using features describing past experience of the referring author and the content of their messages we are able to predict whether referral will be effective, reaching an AUC of 0.87 for those users most experienced in writing efficient referrals. Our results represent a first step towards algorithmically constructing efficient referrals with the goal of mitigating the "filter bubble" effect pervasive in on line social networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.