Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Event Detection Approach Based On Twitter Hashtags (1804.11243v1)

Published 2 Apr 2018 in cs.SI, cs.CL, and cs.IR

Abstract: Twitter is one of the most popular microblogging services in the world. The great amount of information within Twitter makes it an important information channel for people to learn and share news. Twitter hashtag is an popular feature that can be viewed as human-labeled information which people use to identify the topic of a tweet. Many researchers have proposed event-detection approaches that can monitor Twitter data and determine whether special events, such as accidents, extreme weather, earthquakes, or crimes take place. Although many approaches use hashtags as one of their features, few of them explicitly focus on the effectiveness of using hashtags on event detection. In this study, we proposed an event detection approach that utilizes hashtags in tweets. We adopted the feature extraction used in STREAMCUBE and applied a clustering K-means approach to it. The experiments demonstrated that the K-means approach performed better than STREAMCUBE in the clustering results. A discussion on optimal K values for the K-means approach is also provided.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shih-Feng Yang (1 paper)
  2. Julia Taylor Rayz (17 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.