Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unleashing the Power of Hashtags in Tweet Analytics with Distributed Framework on Apache Storm (1812.01141v1)

Published 4 Dec 2018 in cs.DC, cs.IR, and cs.SI

Abstract: Twitter is a popular social network platform where users can interact and post texts of up to 280 characters called tweets. Hashtags, hyperlinked words in tweets, have increasingly become crucial for tweet retrieval and search. Using hashtags for tweet topic classification is a challenging problem because of context dependent among words, slangs, abbreviation and emoticons in a short tweet along with evolving use of hashtags. Since Twitter generates millions of tweets daily, tweet analytics is a fundamental problem of Big data stream that often requires a real-time Distributed processing. This paper proposes a distributed online approach to tweet topic classification with hashtags. Being implemented on Apache Storm, a distributed real time framework, our approach incrementally identifies and updates a set of strong predictors in the Na\"ive Bayes model for classifying each incoming tweet instance. Preliminary experiments show promising results with up to 97% accuracy and 37% increase in throughput on eight processors.

Citations (5)

Summary

We haven't generated a summary for this paper yet.