An Invariant-region-preserving (IRP) Limiter to DG Methods for Compressible Euler Equations (1804.08814v1)
Abstract: We introduce an explicit invariant-region-preserving limiter applied to DG methods for compressible Euler equations. The invariant region considered consists of positivity of density and pressure and a maximum principle of a specific entropy. The modified polynomial by the limiter preserves the cell average, lies entirely within the invariant region and does not destroy the high order of accuracy for smooth solutions. Numerical tests are presented to illustrate the properties of the limiter. In particular, the tests on Riemann problems show that the limiter helps to damp the oscillations near discontinuities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.