Papers
Topics
Authors
Recent
2000 character limit reached

Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture (1804.08662v1)

Published 23 Apr 2018 in cs.CC

Abstract: Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khot's 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain "Grassmanian agreement tester". In this work, we show that the hypothesis of Dinur et. al. follows from a conjecture we call the "Inverse Shortcode Hypothesis" characterizing the non-expanding sets of the degree-two shortcode graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et. al. (2017). Following our work, Khot, Minzer and Safra (2018) proved the "Inverse Shortcode Hypothesis". Combining their proof with our result and the reduction of Dinur et. al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. Moreover, we believe that the shortcode graph provides a useful view of both the hypothesis and the reduction, and might be useful in extending it further.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.