2000 character limit reached
Neural-Davidsonian Semantic Proto-role Labeling
Published 21 Apr 2018 in cs.CL | (1804.07976v3)
Abstract: We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call "Neural-Davidsonian": predicate-argument structure is represented as pairs of hidden states corresponding to predicate and argument head tokens of the input sequence. We demonstrate: (1) state-of-the-art results in SPRL, and (2) that our network naturally shares parameters between attributes, allowing for learning new attribute types with limited added supervision.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.