Sentence Simplification with Memory-Augmented Neural Networks
Abstract: Sentence simplification aims to simplify the content and structure of complex sentences, and thus make them easier to interpret for human readers, and easier to process for downstream NLP applications. Recent advances in neural machine translation have paved the way for novel approaches to the task. In this paper, we adapt an architecture with augmented memory capacities called Neural Semantic Encoders (Munkhdalai and Yu, 2017) for sentence simplification. Our experiments demonstrate the effectiveness of our approach on different simplification datasets, both in terms of automatic evaluation measures and human judgments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.