Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonparametric Bayesian label prediction on a large graph using truncated Laplacian regularization

Published 13 Apr 2018 in stat.CO and stat.ML | (1804.07262v1)

Abstract: This article describes an implementation of a nonparametric Bayesian approach to solving binary classification problems on graphs. We consider a hierarchical Bayesian approach with a prior that is constructed by truncating a series expansion of the soft label function using the graph Laplacian eigenfunctions as basis functions. We compare our truncated prior to the untruncated Laplacian based prior in simulated and real data examples to illustrate the improved scalability in terms of size of the underlying graph.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.