2000 character limit reached
Nonparametric Bayesian label prediction on a large graph using truncated Laplacian regularization (1804.07262v1)
Published 13 Apr 2018 in stat.CO and stat.ML
Abstract: This article describes an implementation of a nonparametric Bayesian approach to solving binary classification problems on graphs. We consider a hierarchical Bayesian approach with a prior that is constructed by truncating a series expansion of the soft label function using the graph Laplacian eigenfunctions as basis functions. We compare our truncated prior to the untruncated Laplacian based prior in simulated and real data examples to illustrate the improved scalability in terms of size of the underlying graph.