Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Objective Bayesian Inference for Repairable System Subject to Competing Risks (1804.06466v1)

Published 17 Apr 2018 in stat.AP

Abstract: Competing risks models for a repairable system subject to several failure modes are discussed. Under minimal repair, it is assumed that each failure mode has a power law intensity. An orthogonal reparametrization is used to obtain an objective Bayesian prior which is invariant under relabelling of the failure modes. The resulting posterior is a product of gamma distributions and has appealing properties: one-to-one invariance, consistent marginalization and consistent sampling properties. Moreover, the resulting Bayes estimators have closed-form expressions and are naturally unbiased for all the parameters of the model. The methodology is applied in the analysis of (i) a previously unpublished dataset about recurrent failure history of a sugarcane harvester and (ii) records of automotive warranty claims introduced in [1]. A simulation study was carried out to study the efficiency of the methods proposed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.