Papers
Topics
Authors
Recent
Search
2000 character limit reached

High Dimensional Time Series Generators

Published 17 Apr 2018 in cs.LG and stat.ML | (1804.06352v3)

Abstract: Multidimensional time series are sequences of real valued vectors. They occur in different areas, for example handwritten characters, GPS tracking, and gestures of modern virtual reality motion controllers. Within these areas, a common task is to search for similar time series. Dynamic Time Warping (DTW) is a common distance function to compare two time series. The Edit Distance with Real Penalty (ERP) and the Dog Keeper Distance (DK) are two more distance functions on time series. Their behaviour has been analyzed on 1-dimensional time series. However, it is not easy to evaluate their behaviour in relation to growing dimensionality. For this reason we propose two new data synthesizers generating multidimensional time series. The first synthesizer extends the well known cylinder-bell-funnel (CBF) dataset to multidimensional time series. Here, each time series has an arbitrary type (cylinder, bell, or funnel) in each dimension, thus for $d$-dimensional time series there are $3{d}$ different classes. The second synthesizer (RAM) creates time series with ideas adapted from Brownian motions which is a common model of movement in physics. Finally, we evaluate the applicability of a 1-nearest neighbor classifier using DTW on datasets generated by our synthesizers.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.