Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commutators of bilinear bi-parameter singular integrals (1804.06296v1)

Published 17 Apr 2018 in math.CA

Abstract: We study the boundedness properties of commutators formed by $b$ and $T$, where $T$ is a bilinear bi-parameter singular integral satisfying natural $T1$ type conditions and $b$ is a little BMO function. For paraproduct free bilinear bi-parameter singular integrals $T$ we prove that $[b, T]_1 \colon Lp(\mathbb{R}{n+m}) \times Lq(\mathbb{R}{n+m}) \to Lr(\mathbb{R}{n+m})$ in the full range $1 < p, q \le \infty$, $1/2 < r < \infty$ satisfying $1/p+1/q = 1/r$. A special case is when $T$ is a bilinear bi-parameter multiplier. We also prove the corresponding Banach range result for all singular integrals satisfying the $T1$ type conditions. In doing so we simplify the corresponding linear proof. Lastly, we prove analogous results for iterated commutators.

Summary

We haven't generated a summary for this paper yet.