Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Geometric and algebraic origins of additive uncertainty relations (1804.06191v2)

Published 17 Apr 2018 in quant-ph

Abstract: Constructive techniques to establish state-independent uncertainty relations for the sum of variances of arbitrary two observables are presented. We investigate the range of simultaneously attainable pairs of variances, which can be applied to a wide variety of problems including finding exact bound for the sum of variances of two components of angular momentum operator for any total angular momentum quantum number $j$ and detection of quantum entanglement. Resulting uncertainty relations are state-independent, semianalytical, bounded-error and can be made arbitrarily tight. The advocated approach, based on the notion of joint numerical range of a number of observables and uncertainty range, allows us to improve earlier numerical works and to derive semianalytical tight bounds for the uncertainty relation for the sum of variances expressed as roots of a polynomial of a single real variable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.