Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Computing the Total Variation Distance of Hidden Markov Models (1804.06170v1)

Published 17 Apr 2018 in cs.FL and cs.LO

Abstract: We prove results on the decidability and complexity of computing the total variation distance (equivalently, the $L_1$-distance) of hidden Markov models (equivalently, labelled Markov chains). This distance measures the difference between the distributions on words that two hidden Markov models induce. The main results are: (1) it is undecidable whether the distance is greater than a given threshold; (2) approximation is #P-hard and in PSPACE.

Citations (23)

Summary

We haven't generated a summary for this paper yet.