Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Total Variation Distance of Labelled Markov Chains (1405.2852v1)

Published 12 May 2014 in cs.LO

Abstract: Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the "inequivalence" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.

Citations (34)

Summary

We haven't generated a summary for this paper yet.