Papers
Topics
Authors
Recent
2000 character limit reached

FishEyeRecNet: A Multi-Context Collaborative Deep Network for Fisheye Image Rectification

Published 13 Apr 2018 in cs.CV | (1804.04784v1)

Abstract: Images captured by fisheye lenses violate the pinhole camera assumption and suffer from distortions. Rectification of fisheye images is therefore a crucial preprocessing step for many computer vision applications. In this paper, we propose an end-to-end multi-context collaborative deep network for removing distortions from single fisheye images. In contrast to conventional approaches, which focus on extracting hand-crafted features from input images, our method learns high-level semantics and low-level appearance features simultaneously to estimate the distortion parameters. To facilitate training, we construct a synthesized dataset that covers various scenes and distortion parameter settings. Experiments on both synthesized and real-world datasets show that the proposed model significantly outperforms current state of the art methods. Our code and synthesized dataset will be made publicly available.

Citations (109)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.