Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Deformation Aware Image Compression (1804.04593v1)

Published 12 Apr 2018 in cs.CV

Abstract: Lossy compression algorithms aim to compactly encode images in a way which enables to restore them with minimal error. We show that a key limitation of existing algorithms is that they rely on error measures that are extremely sensitive to geometric deformations (e.g. SSD, SSIM). These force the encoder to invest many bits in describing the exact geometry of every fine detail in the image, which is obviously wasteful, because the human visual system is indifferent to small local translations. Motivated by this observation, we propose a deformation-insensitive error measure that can be easily incorporated into any existing compression scheme. As we show, optimal compression under our criterion involves slightly deforming the input image such that it becomes more "compressible". Surprisingly, while these small deformations are barely noticeable, they enable the CODEC to preserve details that are otherwise completely lost. Our technique uses the CODEC as a "black box", thus allowing simple integration with arbitrary compression methods. Extensive experiments, including user studies, confirm that our approach significantly improves the visual quality of many CODECs. These include JPEG, JPEG2000, WebP, BPG, and a recent deep-net method.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.