Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random walk on barely supercritical branching random walk (1804.04396v2)

Published 12 Apr 2018 in math.PR

Abstract: Let $\mathcal{T}$ be a supercritical Galton-Watson tree with a bounded offspring distribution that has mean $\mu >1$, conditioned to survive. Let $\varphi_{\mathcal{T}}$ be a random embedding of $\mathcal{T}$ into $\mathbb{Z}d$ according to a simple random walk step distribution. Let $\mathcal{T}p$ be percolation on $\mathcal{T}$ with parameter $p$, and let $p_c = \mu{-1}$ be the critical percolation parameter. We consider a random walk $(X_n){n \ge 1}$ on $\mathcal{T}p$ and investigate the behavior of the embedded process $\varphi{\mathcal{T}p}(X_n)$ as $n\to \infty$ and simultaneously, $\mathcal{T}_p$ becomes critical, that is, $p=p_n\searrow p_c$. We show that when we scale time by $n/(p_n-p_c)3$ and space by $\sqrt{(p_n-p_c)/n}$, the process $(\varphi{\mathcal{T}p}(X_n)){n \ge 1}$ converges to a $d$-dimensional Brownian motion. We argue that this scaling can be seen as an interpolation between the scaling of random walk on a static random tree and the anomalous scaling of processes in critical random environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.