Papers
Topics
Authors
Recent
2000 character limit reached

Growth in linear algebraic groups and permutation groups: towards a unified perspective

Published 9 Apr 2018 in math.GR | (1804.03049v4)

Abstract: By now, we have a product theorem in every finite simple group $G$ of Lie type, with the strength of the bound depending only in the rank of $G$. Such theorems have numerous consequences: bounds on the diameters of Cayley graphs, spectral gaps, and so forth. For the alternating group Alt_n, we have a quasipolylogarithmic diameter bound (Helfgott-Seress 2014), but it does not rest on a product theorem. We shall revisit the proof of the bound for Alt_n, bringing it closer to the proof for linear algebraic groups, and making some common themes clearer. As a result, we will show how to prove a product theorem for Alt_n -- not of full strength, as that would be impossible, but strong enough to imply the diameter bound.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.