Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAP moving horizon state estimation with binary measurements (1804.02167v1)

Published 6 Apr 2018 in cs.SY

Abstract: The paper addresses state estimation for discrete-time systems with binary (threshold) measurements by following a Maximum A posteriori Probability (MAP) approach and exploiting a Moving Horizon (MH) approximation of the MAP cost-function. It is shown that, for a linear system and noise distributions with log-concave probability density function, the proposed MH-MAP state estimator involves the solution, at each sampling interval, of a convex optimization problem. Application of the MH-MAP estimator to dynamic estimation of a diffusion field given pointwise-in-time-and-space binary measurements of the field is also illustrated and, finally, simulation results relative to this application are shown to demonstrate the effectiveness of the proposed approach.

Citations (5)

Summary

We haven't generated a summary for this paper yet.