Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAP moving horizon estimation for threshold measurements with application to field monitoring (1812.11062v2)

Published 22 Dec 2018 in eess.SY and cs.SY

Abstract: The paper deals with state estimation of a spatially distributed system given noisy measurements from pointwise-in-time-and-space threshold sensors spread over the spatial domain of interest. A Maximum A posteriori Probability (MAP) approach is undertaken and a Moving Horizon (MH) approximation of the MAP cost-function is adopted. It is proved that, under system linearity and log-concavity of the noise probability density functions, the proposed MH-MAP state estimator amounts to the solution, at each sampling interval, of a convex optimization problem. Moreover, a suitable centralized solution for large-scale systems is proposed with a substantial decrease of the computational complexity. The latter algorithm is shown to be feasible for the state estimation of spatially-dependent dynamic fields described by Partial Differential Equations (PDE) via the use of the Finite Element (FE) spatial discretization method. A simulation case-study concerning estimation of a diffusion field is presented in order to demonstrate the effectiveness of the proposed approach. Quite remarkably, the numerical tests exhibit a noise-assisted behavior of the proposed approach in that the estimation accuracy results optimal in the presence of measurement noise with non-null variance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.