Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Signatures of surface bundles and stable commutator lengths of Dehn twists (1804.01798v1)

Published 5 Apr 2018 in math.GT, math.GR, and math.SG

Abstract: The first aim of this paper is to give four types of examples of surface bundles over surfaces with non-zero signature. The first example is with base genus 2, a prescribed signature, a 0-section and the fiber genus greater than a certain number which depends on the signature. This provides a new upper bound on the minimal base genus for fixed signature and fiber genus. The second one gives a new asymptotic upper bound for this number in the case that fiber genus is odd. The third one has a small Euler characteristic. The last is a non-holomorphic example. The second aim is to improve upper bounds for stable commutator lengths of Dehn twists by giving factorizations of powers of Dehn twists as products of commutators. One of the factorizations is used to construct the second examples of surface bundles. As a corollary, we see that there is a gap between the stable commutator length of the Dehn twist along a nonseparating curve in the mapping class group and that in the hyperelliptic mapping class group if the genus of the surface is greater than or equal to 8.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.