Papers
Topics
Authors
Recent
2000 character limit reached

Should We Adjust for the Test for Pre-trends in Difference-in-Difference Designs? (1804.01208v2)

Published 4 Apr 2018 in econ.EM, math.ST, stat.ME, and stat.TH

Abstract: The common practice in difference-in-difference (DiD) designs is to check for parallel trends prior to treatment assignment, yet typical estimation and inference does not account for the fact that this test has occurred. I analyze the properties of the traditional DiD estimator conditional on having passed (i.e. not rejected) the test for parallel pre-trends. When the DiD design is valid and the test for pre-trends confirms it, the typical DiD estimator is unbiased, but traditional standard errors are overly conservative. Additionally, there exists an alternative unbiased estimator that is more efficient than the traditional DiD estimator under parallel trends. However, when in population there is a non-zero pre-trend but we fail to reject the hypothesis of parallel pre-trends, the DiD estimator is generally biased relative to the population DiD coefficient. Moreover, if the trend is monotone, then under reasonable assumptions the bias from conditioning exacerbates the bias relative to the true treatment effect. I propose new estimation and inference procedures that account for the test for parallel trends, and compare their performance to that of the traditional estimator in a Monte Carlo simulation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.