Papers
Topics
Authors
Recent
2000 character limit reached

Applying Computer Algebra Systems with SAT Solvers to the Williamson Conjecture (1804.01172v2)

Published 3 Apr 2018 in cs.LO, cs.SC, and math.CO

Abstract: We employ tools from the fields of symbolic computation and satisfiability checking---namely, computer algebra systems and SAT solvers---to study the Williamson conjecture from combinatorial design theory and increase the bounds to which Williamson matrices have been enumerated. In particular, we completely enumerate all Williamson matrices of even order up to and including 70 which gives us deeper insight into the behaviour and distribution of Williamson matrices. We find that, in contrast to the case when the order is odd, Williamson matrices of even order are quite plentiful and exist in every even order up to and including 70. As a consequence of this and a new construction for 8-Williamson matrices we construct 8-Williamson matrices in all odd orders up to and including 35. We additionally enumerate all Williamson matrices whose orders are divisible by 3 and less than 70, finding one previously unknown set of Williamson matrices of order 63.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.