Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robotic Detection of Marine Litter Using Deep Visual Detection Models (1804.01079v2)

Published 3 Apr 2018 in cs.RO

Abstract: Trash deposits in aquatic environments have a destructive effect on marine ecosystems and pose a long-term economic and environmental threat. Autonomous underwater vehicles (AUVs) could very well contribute to the solution of this problem by finding and eventually removing trash. This paper evaluates a number of deep-learning algorithms preforming the task of visually detecting trash in realistic underwater environments, with the eventual goal of exploration, mapping, and extraction of such debris by using AUVs. A large and publicly-available dataset of actual debris in open-water locations is annotated for training a number of convolutional neural network architectures for object detection. The trained networks are then evaluated on a set of images from other portions of that dataset, providing insight into approaches for developing the detection capabilities of an AUV for underwater trash removal. In addition, the evaluation is performed on three different platforms of varying processing power, which serves to assess these algorithms' fitness for real-time applications.

Citations (138)

Summary

We haven't generated a summary for this paper yet.