Papers
Topics
Authors
Recent
2000 character limit reached

Deep Representation for Patient Visits from Electronic Health Records

Published 26 Mar 2018 in cs.CY, cs.LG, and stat.ML | (1803.09533v1)

Abstract: We show how to learn low-dimensional representations (embeddings) of patient visits from the corresponding electronic health record (EHR) where International Classification of Diseases (ICD) diagnosis codes are removed. We expect that these embeddings will be useful for the construction of predictive statistical models anticipated to drive personalized medicine and improve healthcare quality. These embeddings are learned using a deep neural network trained to predict ICD diagnosis categories. We show that our embeddings capture relevant clinical informations and can be used directly as input to standard machine learning algorithms like multi-output classifiers for ICD code prediction. We also show that important medical informations correspond to particular directions in our embedding space.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.