Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Logarithmic girth expander graphs of $SL_n(\mathbb F_p)$ (1803.09229v4)

Published 25 Mar 2018 in math.GR, math.CO, and math.MG

Abstract: We provide an explicit construction of finite 4-regular graphs $(\Gamma_k){k\in \mathbb N}$ with ${girth \Gamma_k\to\infty}$ as $k\to\infty$ and $\frac{diam \Gamma_k}{girth \Gamma_k}\leqslant D$ for some $D>0$ and all $k\in\mathbb{N}$. For each fixed dimension $n\geqslant 2,$ we find a pair of matrices in $SL{n}(\mathbb{Z})$ such that (i) they generate a free subgroup, (ii)~their reductions $\bmod\, p$ generate $SL_{n}(\mathbb{F}{p})$ for all sufficiently large primes $p$, (iii) the corresponding Cayley graphs of $SL{n}(\mathbb{F}_{p})$ have girth at least $c_n\log p$ for some $c_n>0$. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most $O(\log p)$. This gives infinite sequences of finite $4$-regular Cayley graphs of $SL_n(\mathbb F_p)$ as $p\to\infty$ with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions $n\geqslant 2$ (all prior examples were in $n=2$). Moreover, they happen to be expanders. Together with Margulis' and Lubotzky-Phillips-Sarnak's classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube