A Proximal Block Coordinate Descent Algorithm for Deep Neural Network Training
Abstract: Training deep neural networks (DNNs) efficiently is a challenge due to the associated highly nonconvex optimization. The backpropagation (backprop) algorithm has long been the most widely used algorithm for gradient computation of parameters of DNNs and is used along with gradient descent-type algorithms for this optimization task. Recent work have shown the efficiency of block coordinate descent (BCD) type methods empirically for training DNNs. In view of this, we propose a novel algorithm based on the BCD method for training DNNs and provide its global convergence results built upon the powerful framework of the Kurdyka-Lojasiewicz (KL) property. Numerical experiments on standard datasets demonstrate its competitive efficiency against standard optimizers with backprop.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.