2000 character limit reached
Speaker Clustering With Neural Networks And Audio Processing (1803.08276v1)
Published 22 Mar 2018 in cs.SD, cs.LG, eess.AS, and stat.ML
Abstract: Speaker clustering is the task of differentiating speakers in a recording. In a way, the aim is to answer "who spoke when" in audio recordings. A common method used in industry is feature extraction directly from the recording thanks to MFCC features, and by using well-known techniques such as Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM). In this paper, we studied neural networks (especially CNN) followed by clustering and audio processing in the quest to reach similar accuracy to state-of-the-art methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.