Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graded Identities and Isomorphisms on Algebras of Upper Block-Triangular Matrices

Published 19 Mar 2018 in math.RA | (1803.06949v2)

Abstract: Let $G$ be an abelian group and $\mathbb{K}$ an algebraically closed field of characteristic zero. A. Valenti and M. Zaicev described the $G$-gradings on upper block-triangular matrix algebras provided that $G$ is finite. We prove that their result holds for any abelian group $G$: any grading is isomorphic to the tensor product $A\otimes B$ of an elementary grading $A$ on an upper block-triangular matrix algebra and a division grading $B$ on a matrix algebra. We then consider the question of whether graded identities $A\otimes B$, where $B$ is an algebra with a division grading, determine $A\otimes B$ up to graded isomorphism. In our main result, Theorem 3, we reduce this question to the case of elementary gradings on upper block-triangular matrix algebras which was previously studied by O. M. Di Vincenzo and E. Spinelli.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.