Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simultaneous high-probability bounds on the false discovery proportion in structured, regression, and online settings (1803.06790v5)

Published 19 Mar 2018 in math.ST and stat.TH

Abstract: While traditional multiple testing procedures prohibit adaptive analysis choices made by users, Goeman and Solari (2011) proposed a simultaneous inference framework that allows users such flexibility while preserving high-probability bounds on the false discovery proportion (FDP) of the chosen set. In this paper, we propose a new class of such simultaneous FDP bounds, tailored for nested sequences of rejection sets. While most existing simultaneous FDP bounds are based on closed testing using global null tests based on sorted p-values, we additionally consider the setting where side information can be leveraged to boost power, the variable selection setting where knockoff statistics can be used to order variables, and the online setting where decisions about rejections must be made as data arrives. Our finite-sample, closed form bounds are based on repurposing the FDP estimates from false discovery rate (FDR) controlling procedures designed for each of the above settings. These results establish a novel connection between the parallel literatures of simultaneous FDP bounds and FDR control methods, and use proof techniques employing martingales and filtrations that are new to both these literatures. We demonstrate the utility of our results by augmenting a recent knockoffs analysis of the UK Biobank dataset.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com