Papers
Topics
Authors
Recent
2000 character limit reached

Metric-affine f(R,T) theories of gravity and their applications (1803.05525v2)

Published 14 Mar 2018 in gr-qc

Abstract: We study f(R,T) theories of gravity, where T is the trace of the energy-momentum tensor T_{\mu\nu}, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the non-conservation of the energy-momentum tensor, which implies non-geodesic motion and consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications are discussed.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.