Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experience Recommendation for Long Term Safe Learning-based Model Predictive Control in Changing Operating Conditions (1803.04065v1)

Published 11 Mar 2018 in cs.RO

Abstract: Learning has propelled the cutting edge of performance in robotic control to new heights, allowing robots to operate with high performance in conditions that were previously unimaginable. The majority of the work, however, assumes that the unknown parts are static or slowly changing. This limits them to static or slowly changing environments. However, in the real world, a robot may experience various unknown conditions. This paper presents a method to extend an existing single mode GP-based safe learning controller to learn an increasing number of non-linear models for the robot dynamics. We show that this approach enables a robot to re-use past experience from a large number of previously visited operating conditions, and to safely adapt when a new and distinct operating condition is encountered. This allows the robot to achieve safety and high performance in an large number of operating conditions that do not have to be specified ahead of time. Our approach runs independently from the controller, imposing no additional computation time on the control loop regardless of the number of previous operating conditions considered. We demonstrate the effectiveness of our approach in experiment on a 900\,kg ground robot with both physical and artificial changes to its dynamics. All of our experiments are conducted using vision for localization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.