Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion deblurring of faces (1803.03330v1)

Published 8 Mar 2018 in cs.CV

Abstract: Face analysis is a core part of computer vision, in which remarkable progress has been observed in the past decades. Current methods achieve recognition and tracking with invariance to fundamental modes of variation such as illumination, 3D pose, expressions. Notwithstanding, a much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. Therefore, we propose a data-driven method that encourages identity preservation. The proposed model includes two parallel streams (sub-networks): the first deblurs the image, the second implicitly extracts and projects the identity of both the sharp and the blurred image in similar subspaces. We devise a method for creating realistic motion blur by averaging a variable number of frames to train our model. The averaged images originate from a 2MF2 dataset with 10 million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we utilize the deblurred outputs to conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification. The experimental evaluation demonstrates the superiority of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Grigorios G. Chrysos (38 papers)
  2. Paolo Favaro (66 papers)
  3. Stefanos Zafeiriou (137 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.