Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Negative immersions for one-relator groups (1803.02671v4)

Published 7 Mar 2018 in math.GR and math.GT

Abstract: We prove a freeness theorem for low-rank subgroups of one-relator groups. Let $F$ be a free group, and let $w\in F$ be a non-primitive element. The primitivity rank of $w$, $\pi(w)$, is the smallest rank of a subgroup of $F$ containing $w$ as an imprimitive element. Then any subgroup of the one-relator group $G=F/\langle\langle w\rangle\rangle$ generated by fewer than $\pi(w)$ elements is free. In particular, if $\pi(w)>2$ then $G$ doesn't contain any Baumslag--Solitar groups. The hypothesis that $\pi(w)>2$ implies that the presentation complex $X$ of the one-relator group $G$ has negative immersions: if a compact, connected complex $Y$ immerses into $X$ and $\chi(Y)\geq 0$ then $Y$ is Nielsen equivalent to a graph. The freeness theorem is a consequence of a dependence theorem for free groups, which implies several classical facts about free and one-relator groups, including Magnus' Freiheitssatz and theorems of Lyndon, Baumslag, Stallings and Duncan--Howie. The dependence theorem strengthens Wise's $w$-cycles conjecture, proved independently by the authors and Helfer--Wise, which implies that the one-relator complex $X$ has non-positive immersions when $\pi(w)>1$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.