Papers
Topics
Authors
Recent
Search
2000 character limit reached

Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type

Published 7 Mar 2018 in math.CO, math.NT, math.QA, and math.RT | (1803.02515v1)

Abstract: We utilize the technique of staircases and jagged partitions to provide analytic sum-sides to some old and new partition identities of Rogers-Ramanujan type. Firstly, we conjecture a class of new partition identities related to the principally specialized characters of certain level $2$ modules for the affine Lie algebra $A_9{(2)}$. Secondly, we provide analytic sum-sides to some earlier conjectures of the authors. Next, we use these analytic sum-sides to discover a number of further generalizations. Lastly, we apply this technique to the well-known Capparelli identities and present analytic sum-sides which we believe to be new. All of the new conjectures presented in this article are supported by a strong mathematical evidence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.